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Abstract-A simple method for the calculation of heat transfer in a laminar, constant property and 
constant surface temperature flow, was described by Smith and Spalding [l]. In the present paper, the 
method is extended to the range of Prandtl numbers 0.7 to 10. Examples are given of heat transfer 

calculations for ellipses of 2:l and 4:l fineness ratio. 

R&nne-Une methode simple de calcul de la transmission de chaleur darts un ecoulement laminaire 
a proprietes constantes et temperature de surface constante a ete d&rite par Smith et Spalding [I]. 
Dans cet article, la mtthode est Ctendue au domane des nombres de Prandtl compris entre 0,7 et 10. 
Des exemples de calcul de transmission de chaleur sont don& pour les ellipses d’excentricite 2: 1 

et4:l. 

Zusammenfassung-Smith und Spalding [l] beschrieben eine einfache Methode zur Berechnung des 
Warmetiberganges in einer Laminarstriimung mit gleichbleibenden Stoffeigenschaften und konstanter 
Temperatur der Berandung. Diese Methode wird hier auf den Bereich der Prandtlzahlen von 0,7 bis 10 
ausgedehnt. Als Beispiel wird der Warmeiibergang an Ellipsen vom Achsenverhaltnis 2:l und 4: 1 

berechnet. 

AHEOTWW-CMPIT II CIIOJI~HH~ [l] gana onncanne IIPOCTOFO MeToga pacsera rennoo6meua 
B JIaMLIHapHOM IIOTOKe C IIOCTORHHJAMB (PH3IIHCCKHMH XapaKTepHCTHKaMH H HOCTORHHOH 
TeMHePaTyPOti HOHepXHOCTH. B Hy6JIHKyCMOi% CTaTbe 3TOT MeTOx paCHpOCTpaHI?H Ha 06JIaCTb 
HHcen IIpaHnTnH OT 0,7 A0 10. IIPHB~AHTCH HpHMepbr pacH8Ta TCHnOO6MeH3 ASH ~~HHHCOB 

C COOTHOIHCHHCM OCt?n PaBHbIM 2:1 H 4:1. 
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NOTATION 

number defined in equation (2); 
thermal diffusivity, k/p?,: 
number defined in equation (2); 
characteristic length of body, e.g. 

chord or major axis ; 
specific heat ; 
“heat flux thickness” defined by 

h = k/A,; 
error term defined in equation (2) 
heat transfer coefficient ; 
conductivity of the fluid; 

Nusselt number, hclk ; 
Nusselt number, hx/k; 

* Professor of Thermodynamics, University of Not- 
tingham, Nottingham. 

t Department of Aircraft Propulsion, College of 
Aeronautics, Cranfield. 

IL. 
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Q. 
Re, 
Re,. 

0: 
u. 

x, Y.2, 
X, 

?‘, 

fluid viscosity: 

kinematic viscosity of the fluid; 

heat; 

Reynolds number, UC/V; 

Reynolds number, UTxiv; 

radial dimension of axisymmetric 

body ; 
density: 

Prandtl number, v/a; 
temperature; 

mainstream velocity at a point on 

the surface; 

approach or reference velocity; 
fluid velocity within the boundary 

layer ; 
vectorial length; 

distance along surface from stagna- 

tion point; 

distance normal to surface. 
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1. INTRODUCTION 

EXACT solutions of the boundary layer equations 
are possible only for a limited range of main- 
stream velocity distributions. To solve a problem 
involving the flow of a fluid round a body of 
arbitrary shape, approximate methods are 
necessary. Numerous approximate methods are 
available to calculate heat transfer in a laminar 
boundary layer with constant fluid properties 
and constant wall temperature. 

Frossling [2] carried out the calculations of the 
temperature distribution by assuming a power 
series for mainstream velocity distribution, 
velocity distribution in the boundary layer and 
the temperature distribution in the boundary 
layer, and solved the differential equation. The 
method is very cumbersome. 

Eckert [3] solved the temperature equation by 
assuming that the rate of growth of the tempera- 
ture layer is the same as for a wedge flow with 
the same temperature thickness and the same 
value of a certain pressure gradient parameter. 
However, by this method, the calculations for 
the thermal boundary layer are considerably 
more tedious than those for the velocity layers. 

Squire [4] derived an approximate method by 
solving an approximate heat flux equation. The 
Blasius velocity profile was taken, but the dis- 
placement thickness was allowed to vary with x 
in a manner appropriate to the mainstream. 
The temperature profile was taken similar to the 
velocity profile but with scale in the y direction 
altered in a manner to be determined from the 
energy integral equation. 

This method will give good results only for a 
streamline body because the profiles are assumed 
to be that of flat plate. Further the method 
involves more calculation than that of Smith and 
Spalding [l]. 

Ambrok [5] has solved an approximate heat 
flux equation by assuming that a relation of the 
type Nu, = A’(Re,)” which is true for flat plate, 
is also valid for a flow over a body of arbitrary 
shape. This method, though simple, gives lower 
values of heat transfer when compared to those 
of Eckert [3]. 

Allen and Look [6] have applied Reynolds 
analogy to calculate heat transfer from shear 
stress for fluids with Prandtl number unity. 
Frick and McCullough [7] extended this method 

for any Prandtl number by suggesting a simple 
multiplier for Prandtl number. This method 
gives very high values of heat transfer. 

The simplest of all the methods appears to be 
that of Smith and Spalding [l] whose simple 
quadratures give results identical with those of 
Eckert [3]. The Smith and Spalding method is 
limited to fluid with Prandtl number = O-7 which 
is adequate for air and some other gases. How- 
ever, to meet the case of liquids, the method has 
been extended in the present paper to cover a 
range of Prandtl numbers up to 10. 

2. EXTENSION OF SMITH AND SPALDING 
METHOD TO A RANGE OF PRANDTL NUMBERS 

From vectorial dimensional analysis, it can be 
shown that the rate of growth of a thermal 
boundary layer is dependent on the thickness of 
the layer and on the mainstream velocity 
gradient, i.e. 

(1) 

In deriving the above relation, the following 
assumptions are made in addition to the boun- 
dary layer assumptions : 

(1) The rate of growth depends only on local 
conditions. 

(2) Any dependence of the rate of growth on 
velocity layer shape or thickness can be 
ignored. 

These assumptions lead to 

and when dimensionless groups are formed 
allowing a separate identity to the X, Y, 2, 
length dimensions, equation (1) follows. The 
dimensions QT-18-1X-1 YZ-l and II~T-~X--~ 
YZ-l assigned to k and p respectively, assert 
the usual boundary layer assumptions that k and 
CL “act” only through asjay and &lay. This 
assertion leads to equation (1) instead of a more 
general and less useful relation obtained when 
the three length dimensions are undistinguished. 

The unknown function in equation (1) can be 
obtained from the exact solutions of the thermal 
boundary layer equations. From exact solution 
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for the thermal boundary layers in “wedge” 
flows by Eckert [3] (Fig. l), it can be seen that 
the relation between the two quantities is nearly 
linear. 

! 
0 

1 

04 

FIG. 1. Typical graph showing relation between 

U, dA2 __ _4 : 
Y dx 

and A; ‘2 for o = 5. 

Writing the relation 

where E4 is the error of the linear approximation, 
and is a small number dependent on 

we may 
V-1 to 1 

integrate, using the integrating factor 

From this quadrature, knowing A and B, J4 
may be calculated everywhere, U, being a 
known function of x, and v being known. The 
calculation is in principle iterative since E, 
cannot be found until a first approximation to 
A, has been obtained. This first approximation, 
called A4c1) is calculated by omitting the last 
term from equation (3). From A,(,). E4c1) is 

calculated, and hence d,(,). Actually I&) is 
often so small that the first approximation Jtrl) 
suffices. 

From A, the heat transfer coefficient may be 
found by the equation: 

It =-: k/3,. (4) 

It is preferable to work with the dimensionless 
forms of equations (3) and (4). They are: 

and 

E, is now dependent on 

(5) 

(6) 

At the front stagnation point, equation (5) 
becomes 

(2j’ (‘) = &). 

d(xlc) 

(7) 

Eckert [3] gives data sufficing for the calcula- 
tion of A, B, and E, for a = 0*7,0.8, 1.0, 5.0 and 
10. Smith and Spalding [l] gave A, B, for 
v = 0.7 and the values for other u are added 
below, in Table 1. 
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Table 1 

A 11.68 10.61 i 9.07 3.00 1.885 
B 2.87 2.90 2.95 3.27 3.41 

AIB / 4.07 3.66 3.07 0,919 o-554 

_--_cyp-- --___ 

Figure 1 shows the relation between 

v; W2) A2 dU 
+- and 2 2 

Y dx v dx 

for u = 5, as an example. Similar 
drawn for other (T values to obtain 
values of Table 1. 

E4 is given in Table 2. 

graphs were 
the A and B 

Tables 1 and 2 give all the numerical data 
necessary for computing heat transfer in laminar 
layers over the range CT = O-7 to 10. For con- 
venience in using the method at intermediate 0 
values, the dependence of A and 3 on v has been 
plotted in Fig. 2. 

Equations (5) and (6) have been computed by 
the authors, for flow over ellipses of major/ 
minor axis ratio 4: 1 and 2:1, and for Prandtl 

numbers 0*7,0+8, l-0, 5.0 and 10. Integration was 
performed by Simpson’s rule using 0.01 intervals 
to x/c = 0.1, then 0.05 intervals to x/c = 0.7. 
An extract from the computation for u = 5, for 
the 4:l ellipse, is given in Table 3. The results of 
these calculations are shown in Figs. 3 and 4, and 
the velocity distributions which were used are 
shown in Fig. 5. 

Comparison of these calculations with other 
theoretical results is not possible except at 
u = 0.7, where results from Eckert [3] and 
Schuh [S] are available. These results are in too 
close agreement with those of the present paper 
for differences to appear when plotting to the 
scale of Figs. 3 and 4. 

3. A~SYM~T~C FLOW 

By the use of Mangler’s transformations [9]: 

(1) 

(3) 

I7 = 0.7 “9 !!L/t 
Y d.u 

Ee 
-- 

6.05 407 2.26 1 1.01 0 I -1*02 

le42 0 -@68 -0.67 I /l-Y_ 2.06 

D = 0.8 
! A: d[/, 

.- - 
I vdx 

i 
5.427 2039 0 -0.937 

/ E4 j 

3,663 0,917 

j 1.027 0.011 / -0,618 / -0a4 0 l-935 
-___ 

o= 1.0 3 3 
v dx 

4.541 3,074 1,721 0.779 0 -0.809 

! ! =h 0.919 -0m2 -0~551 -0.543 0 1.716 

I 

(r=5 
4; diJ1 ’ i ~~ -_. 

Y E1 dx 

1.327 0.919 0.531 0248 0 -0.287 

I 0.343 0 
-.---- 

-0.202 -0.208 0 0.740 

, 
a= to 1 

A: dU, 
vdx 

0.798 0554 0.325 0.154 0 -@185 

! ES 0.238 0 -0,126 -0.132 
I 

O 0.491 

-- _-_- 
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FIG. 2. Variation of A and B in equation (2) with Prandtl number. 

Table 3 
_I-._._________.. _._- - _.~_~__.~_ -.--::zL _~_ ._~_... --_. __. __ ~_ 

XIC 0 / 0.1 / 0.2 / 0.3 / 0.4 / 0’5 / 0.6 1 0.7 0.8 _~~I~ 
~___ 

&lU 1.25 j 1,249 j 1.245 ._ 

I = J’,i’ (u,/u)“.~’ d 

(+)“(:) = &$& 1 0.023 ! 0.164 , ~ 0.371 1 0,591 ; 0,821 ~ 1.295 i 1.295 I 1.55 I .839 * j i 

I -I- _.._/________--- ---- ---- ---- 

-*EE_ 1st approx. 
v/( UC/l~, 

I 
/ 

/ 6.601 
I 

0.919 

I I 

2.47 j 0.976 0.88 0.803 0.737 

! ___,__-~___ - _l__-l- _---__ 
I I / I / 

0.232 0.07 0.041 / 0.011 

I ~ 
-0.098 .- 0.277 - 0.027 

.;_ 
I 0,185 0.685 

-@018 / -0W4 1 -0%3 -@078 
/ 

-0.085 - 0.084 

-0.038 --OX)2 

hc UC 
/J(-) 2nd approx. i;‘ Y I i 

I I I 
6.601 2559 / 1.694 j 1,336 j 1.13 0.995 

/ 
0.8 I3 0,738 0.893 

-- .-.-.!__.’ -___ .__--__ 
No further cycles are needed. 

__ ___‘__-- ’ _--_a- 

* From the front stagnation point relation. 
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FIG. 3. Dis~ibutioR of Nusselt number of the surface 
of a 2:l ellipse for various Prandtl numbers. 
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FIG. 4. Distribution of Nusselt number on the surface 
of a 4:l ellipse for various Prandtl numbers. 
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Foci. 5. Velocity distributions on the 2:l and 4:l ellipses. 
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(4) I; =:-: (c/r) h 

(5) l-71 = u,. 

the method given above can be used for axi- 
symmetric flows. Given U,(x) and T(X), &(x) 
may be tabulated and h determined from 
equations (5) and (6) and hence h. 

4. CONCLUSION 

The method described and illustrated in 
detail above, gives a very rapid calculation of 
heat transfer in the two-dimensional or axi- 
symmetric cases to which it can be applied. It is 
difficult to assess the accuracy of the calculations : 
for “wedge” flows the results should be exact, 
as should those of Eckert. The basis of the 
present method is in fact simply that on a sur- 
face with an arbitrary U, distribution, the rate of 
growth of thermal layer thickness is the same as 
it would be in a wedge flow with the same 
thermal thickness, U, and dU,/dx. The present 
method is very unlikely to give highly misleading 
predictions of heat transfer: stagnation point 
solutions are exact within the usual boundary 
layer assumptions, and often large portions of 
subsequent velocity distributions are similar to 
“wedge” flow distributions. The method should 
be used with some regard for the velocity- 
layer phenomena-it would be fortuitous if the 
method gave accurate results in a region of flow 

separation, but the authors believe that it can be 
used with some confidence to near the calculated 
separation point. 
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